Differentiability and higher integrability results for local minimizers of splitting-type variational integrals in 2D with applications to nonlinear Hencky-materials

نویسندگان

  • Martin Fuchs
  • Michael Bildhauer
چکیده

We prove higher integrability and differentiability results for local minimizers u: R2 ⊃ Ω → RM , M ≥ 1, of the splitting-type energy Ω[h1(|∂1u|) + h2(|∂2u|)] dx. Here h1, h2 are rather general N -functions and no relation between h1 and h2 is required. The methods also apply to local minimizers u: R2 ⊃ Ω → R2 of the functional ∫ Ω[h1(|div u|) + h2(|ε(u)|)] dx so that we can include some variants of so-called nonlinear Hencky-materials. Further extensions concern non-autonomous problems.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Twodimensional Variational Problems With A Wide Range Of Anisotropy

We consider local minimizers u : R 2 ⊃ Ω → R M of the variational integral Ω H(∇u) dx with density H growing at least quadratically and allowing a very large scale of anisotropy. We discuss higher integrability properties of ∇u as well as the differentiability of u in the classical sense. Moreover, a Liouville-type theorem is established.

متن کامل

Variational integrals with a wide range of anisotropy

We consider anisotropic variational integrals of (p, q)-growth and prove for the scalar case interior C-regularity of bounded local minimizers under the assumption that q ≤ 2p by the way discussing a famous counterexample of Giaquinta. In the vector case we obtain some higher integrability result for the gradient.

متن کامل

A remark on the regularity of vector-valued mappings depending on two variables which minimize splitting-type variational integrals

We combine a maximum principle for vector-valued mappings established by D’Ottavio, Leonetti and Musciano [DLM] with regularity results from [BF3] and prove the Hölder continuity of the first derivatives for local minimizers u: Ω → RN of splitting-type variational integrals provided Ω is a domain in R2. Roughly speaking, anisotropic variational integrals ∫ Ω F (∇u) dx with integrand F (∇u) of (...

متن کامل

Higher integrability of the gradient for vectorial minimizers of decomposable variational integrals

We consider local minimizers u: Rn ⊃ Ω → RN of variational integrals I[u] := ∫ Ω F (∇u) dx, where F is of anisotropic (p, q)-growth with exponents 1 < p ≤ q < ∞. If F is in a certain sense decomposable, we show that the dimensionless restriction q ≤ 2p+2 together with the local boundedness of u implies local integrability of ∇u for all exponents t ≤ p+2. More precisely, the initial exponents fo...

متن کامل

Partial Regularity for Degenerate Variational Problems and Image Restoration Models in Bv

We establish partial and local C1,α-regularity results for vectorial almost-minimizers of convex variational integrals in BV. In particular, we investigate cases with a degenerate or singular behavior of p-Laplace type, and we cover (local) minimizers of the exemplary integrals ∫

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008